International Journal of Economy, Energy and Environment

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Macroeconomic Factors Determining CO2 Emission in Bangladesh: Through the Lens of VECM Approach

Never before has this planet encountered this kind of environmental crisis. Overall macroeconomic activities are inarguably linked to the worsening environmental quality. As a result, designing economic policies inevitably requires the knowledge of the factors that hurt the environment and lead to serious climatic conditions. Using secondary data from the year 1990 to 2021 and employing vector error correction model (VECM), this study attempts to determine the factors impacting carbon dioxide (CO2) emission in Bangladesh. The findings of this study show that GDP, total trade volume (TT) and energy consumption (EN) raise the level of CO2 emission in the short run and the effect of population (PO) is not statistically significant. The long-run model also substantiates that GDP, TT, EN and PO have positive impact on the CO2 emission. Though the use of renewable energy (RE) reduces emissions both in the short and long run, this effect is not statistically significant. These findings can help recognize the unintended losses incurred and formulate effectual policies for withstanding the pernicious effects of CO2 emission from a developing country perspective. Thus, this study significantly contributes to the appropriate policymaking activities that help developing nations around the world to sustainably achieve economic growth without hurting the environment.

CO2 Emission, GDP, Energy Use, Trade Volume, Population, Environmental Quality, VECM, Bangladesh

APA Style

Tanvir Ahmed, M., Ferdous, R. (2023). Macroeconomic Factors Determining CO2 Emission in Bangladesh: Through the Lens of VECM Approach. International Journal of Economy, Energy and Environment, 8(5), 118-128. https://doi.org/10.11648/j.ijeee.20230805.13

ACS Style

Tanvir Ahmed, M.; Ferdous, R. Macroeconomic Factors Determining CO2 Emission in Bangladesh: Through the Lens of VECM Approach. Int. J. Econ. Energy Environ. 2023, 8(5), 118-128. doi: 10.11648/j.ijeee.20230805.13

AMA Style

Tanvir Ahmed M, Ferdous R. Macroeconomic Factors Determining CO2 Emission in Bangladesh: Through the Lens of VECM Approach. Int J Econ Energy Environ. 2023;8(5):118-128. doi: 10.11648/j.ijeee.20230805.13

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. L. P. Rosa and S. K. Ribeiro, “The Present, Past, and Future Contributions to Global Warming of CO2 Emissions from Fuels,” Clim. Change, vol. 48, no. 2, pp. 289–307, 2001, doi: 10.1023/A:1010720931557.
2. M.-F. Li, H. Hu, and L.-T. Zhao, “Key factors affecting carbon prices from a time-varying perspective.,” Environ. Sci. Pollut. Res. Int., vol. 29, no. 43, pp. 65144–65160, Sep. 2022, doi: 10.1007/s11356-022-20376-x.
3. H. D. Matthews and S. Wynes, “Current global efforts are insufficient to limit warming to 1.5°C,” Science (80-.)., vol. 376, no. 6600, pp. 1404–1409, 2022, doi: 10.1126/science.abo3378.
4. P. Mitić, A. Fedajev, M. Radulescu, and A. Rehman, “The relationship between CO2 emissions, economic growth, available energy, and employment in SEE countries,” Environ. Sci. Pollut. Res., pp. 16140–16155, 2022, doi: 10.1007/s11356-022-23356-3.
5. N. Shpak et al., “CO2 Emissions and Macroeconomic Indicators: Analysis of the Most Polluted Regions in the World,” Energies, vol. 15, no. 8, 2022, doi: 10.3390/en15082928.
6. M. Shahidan Shaari, F. Masnan, N. Hidayah Harun, and N. Fadzilah Zainal, “Macroeconomic Factors affecting CO2Emissions in Malaysia: ARDL Approach,” IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020, doi: 10.1088/1757-899X/864/1/012050.
7. M. M. Islam, M. Alharthi, and M. W. Murad, “The effects of carbon emissions, rainfall, temperature, inflation, population, and unemployment on economic growth in Saudi Arabia: An ARDL investigation,” PLoS One, vol. 16, no. 4 April, pp. 1–21, 2021, doi: 10.1371/journal.pone.0248743.
8. M. Z. Islam, Z. Ahmed, M. K. Saifullah, S. N. Huda, and S. M. Al-Islam, “CO2 Emission, Energy Consumption and Economic Development: A Case of Bangladesh,” J. Asian Financ. Econ. Bus., vol. 4, no. 4, pp. 61–66, 2017, doi: 10.13106/jafeb.2017.vol4.no4.61.
9. H. Vidyarthi, “Energy consumption, carbon emissions and economic growth in India,” World J. Sci. Technol. Sustain. Dev., vol. 10, no. 4, pp. 278–287, Jan. 2013, doi: 10.1108/WJSTSD-07-2013-0024.
10. M. A. I. Gazi, M. Nahiduzzaman, J. Shaturaev, B. K. Dhar, and M. A. Halim, “Dynamic Nexus between macroeconomic factors and CO2 emissions: Evidence from oil-producing countries,” Front. Environ. Sci., vol. 10, no. October, pp. 1–19, 2022, doi: 10.3389/fenvs.2022.1005814.
11. R. Ali, R. I. Hussain, and S. Hussain, “the Impact of Macroeconomic Factors on Carbon Dioxide Emission in South Asia : a Panel Analysis,” Pak. Econ. Soc. Rev., vol. 59, no. 1, pp. 51–84, 2021.
12. W. Ahmad, S. W. Khan, and M. S. Yunis, “The relationship of macroeconomic factors with carbon dioxide emissions in Japan,” FWU J. Soc. Sci., vol. 13, no. 2, pp. 14–24, 2019.
13. A. Anwar, A. R. Chaudhary, S. Malik, and M. Bassim, “Modelling the Macroeconomic Determinants of Carbon Dioxide Emissions in the G-7 Countries: The Roles of Technological Innovation and Institutional Quality Improvement,” https://doi.org/10.1177/09721509211039392, Sep. 2021, doi: 10.1177/09721509211039392.
14. S. Farooq, I. Ozturk, M. T. Majeed, and R. Akram, “Globalization and CO2 emissions in the presence of EKC: A global panel data analysis,” Gondwana Res., vol. 106, pp. 367–378, 2022, doi: https://doi.org/10.1016/j.gr.2022.02.002.
15. M. Can and G. Gozgor, “The impact of economic complexity on carbon emissions: evidence from France,” Environ. Sci. Pollut. Res., vol. 24, pp. 16364–16370, 2017.
16. K. Saidi and S. Hammami, “The impact of CO2 emissions and economic growth on energy consumption in 58 countries,” Energy Reports, vol. 1, pp. 62–70, 2015, doi: 10.1016/j.egyr.2015.01.003.
17. Y. Wang, Y. Kang, J. Wang, and L. Xu, “Panel estimation for the impacts of population-related factors on CO2 emissions: A regional analysis in China,” Ecol. Indic., vol. 78, pp. 322–330, 2017.
18. Y. Yu, Y. Deng, and F. Chen, “Impact of population aging and industrial structure on CO2 emissions and emissions trend prediction in China,” Atmos. Pollut. Res., vol. 9, no. 3, pp. 446–454, 2018.
19. Y. Karedla, R. Mishra, and N. Patel, “The impact of economic growth, trade openness and manufacturing on CO2 emissions in India: an autoregressive distributive lag (ARDL) bounds test approach,” J. Econ. Financ. Adm. Sci., vol. 26, no. 52, pp. 376–389, 2021, doi: 10.1108/JEFAS-05-2021-0057.
20. R. Ohlan, “The impact of population density, energy consumption, economic growth and trade openness on CO 2 emissions in India,” Nat. Hazards, vol. 79, pp. 1409–1428, 2015.
21. J. Wolters and U. Hassler, “Unit root testing,” All. Stat. Arch., vol. 90, no. 1, pp. 43–58, 2006, doi: 10.1007/s10182-006-0220-6.
22. B. N. Rath and V. Akram, “Popularity of Unit Root Tests: A Review,” Asian Econ. Lett., vol. 2, no. 4, pp. 1–5, 2021, doi: 10.46557/001c.24141.
23. J. Glynn, N. Perera, and R. Verma, “Unit root tests and structural breaks: A survey with applications,” Rev. Metod. Cuantitativos para la Econ. y la Empres., vol. 3, pp. 63–79, 2007.
24. J. P. Byrne and Roger Perman, “Unit Roots and Structural Breaks: A Survey of the Literature,” 10, 2006.
25. D. N. Gujarati and D. Porter, Basic Econometric. The McGraw-Hill Series Economics, 2008.
26. D. A. Dickey and W. Fuller, “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root,” Econometrica, vol. 49, no. 4, pp. 1057–1072, 1981.
27. P. C. B. Phillips and P. Perron, “Testing for a unit root in time series regression,” Biometrika, vol. 75, no. 2, pp. 335–346, 1988, doi: 10.1093/biomet/75.2.335.
28. E. Ziovt and D. W. K. Andrews, “Further Evidance on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis,” J. Budiness Stat., vol. 10, no. 3, pp. 25–44, 1992, [Online]. Available: http://www.jstor.org/stable/1392148.
29. H. W. Peers, “Likelihood Ratio and Associated Test Criteria,” Biometrika, vol. 58, no. 3, pp. 577–587, Jul. 1971, doi: 10.2307/2334392.
30. H. Akaike, “Fitting autoregressive models for prediction,” Ann. Inst. Stat. Math., vol. 21, no. 1, pp. 243–247, 1969, doi: 10.1007/BF02532251.
31. H. Akaike, “A Bayesian Extension of the Minimum AIC Procedure of Autoregressive Model Fitting,” Biometrika, vol. 66, no. 2, pp. 237–242, Jul. 1979, doi: 10.2307/2335654.
32. G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat., vol. 6, no. 2, pp. 461–464, Jul. 1978, [Online]. Available: http://www.jstor.org/stable/2958889.
33. E. J. Hannan and B. G. Quinn, “The Determination of the Order of an Autoregression,” J. R. Stat. Soc. Ser. B, vol. 41, no. 2, pp. 190–195, Jul. 1979, [Online]. Available: http://www.jstor.org/stable/2985032.
34. A. Hatemi-J and R. S. Hacker, “Can the LR test be helpful in choosing the optimal lag order in the VAR model when information criteria suggest different lag orders?,” Appl. Econ., vol. 41, no. 9, pp. 1121–1125, Apr. 2009, doi: 10.1080/00036840601019273.
35. G. Kirchgassner and W. Wolters, Introduction to Modern Time series Analysis. Berlin, 2007.
36. C. W. J. Engle, Robert F. and Granger, “Co-Integration and Error Correction : Representation, Estimation,” vol. 55, no. 2, pp. 251–276, 1987.
37. S. Johansen, “Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models,” Econometrica, vol. 59, no. 6, pp. 1551–1580, 1991.
38. S. Winarno, M. Usman, D. Kurniasari, and Widiarti, “Application of Vector Error Correction Model (VECM) and Impulse Response Function for Daily Stock Prices Application of Vector Error Correction Model (VECM) and Impulse Response Function for Daily Stock Prices,” J. Phys. Conf. Ser., 2021, doi: 10.1088/1742-6596/1751/1/012016.
39. C. A. Sims, “Macroeconomics and Reality,” Econometrica, vol. 48, pp. 1–48, 1980, doi: https://doi.org/10.2307/1912017.
40. Á. B. Edina Berlinger, Ferenc Illés, Milán Badics, G. G. Gergely Daróczi, Barbara Dömötör, B. M. Dániel Havran, Péter Juhász, István Margitai, Á. T. Péter Medvegyev, Julia Molnár, Balázs Árpád Szűcs, and Á. V.-D. Tamás Vadász, Kata Váradi, Mastering R for Quantitative Finance. Birmingham: Packt Publishing Ltd, 2015.
41. C. M. Jarque and A. K. Bera, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Econ. Lett., vol. 6, no. 3, pp. 255–259, 1980, doi: 10.1016/0165-1765(80)90024-5.